Using Hierarchical Adaptive Neuro Fuzzy Systems And Design Two New Edge Detectors In Noisy Images
نویسندگان
چکیده
One of the most important topics in image processing is edge detection. Many methods have been proposed for this end but most of them have weak performance in noisy images because noise pixels are determined as edge. In this paper, two new methods are represented based on Hierarchical Adaptive Neuro Fuzzy Systems (HANFIS). Each method consists of desired number of HANFIS operators that receive the value of some neighbouring pixels and decide central pixel is edge or not. Simple train images are used in order to set internal parameters of each HANFIS operator. The presented methods are evaluated by some test images and compared with several popular edge detectors. The experimental results show that these methods are robust against impulse noise and extract edge pixels exactly.
منابع مشابه
A Hybrid Edge Detection Algorithm for Salt - and - Pepper Noise
This paper presents a hybrid edge detection algorithm in situations where the image is corrupted by Saltand-Pepper noise. Edge detection is an important preprocessing step in image analysis. Successful results of image analysis extremely depend on edge detection. Up to now several edge detection methods have been developed such as Roberts, Prewitt, Sobel, Zero-crossing, Canny, etc. But, they ar...
متن کاملA FUZZY DIFFERENCE BASED EDGE DETECTOR
In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملTrajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control
In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کامل